Telegram Group & Telegram Channel
📌 Какой вектор лучше: Dense vs Multi-vector embeddings

Раньше хватало одного эмбеддинга на документ. Сейчас — этого уже мало. Нужна структура.

📍 Dense-векторы (single vector per doc):
— быстрые
— экономные по памяти
— слабо улавливают контекст
— «плавают» при сложных запросах
👉 подходят для простого поиска

📍 Multi-vector (late interaction):
— вектор на каждый токен
— сравниваются токены запроса и документа напрямую
— лучше качество на сложных задачах
— выше требования к хранилищу
👉 баланс между скоростью и точностью

📍 Late interaction ≈ золотая середина:
— быстрее, чем cross-encoders
— точнее, чем dense-векторы

📍 Примеры моделей:
— ColBERT — для текстов
— ColPali — multimodal: текст + PDF как картинки
— ColQwen — как ColPali, но на Qwen2 (Apache 2.0, компактнее)

Если вы работаете с PDF-документами (таблицы, графики, изображения) — мультивекторные модели решают большинство проблем без «чaнкинга» и костылей.

Библиотека дата-сайентиста #буст
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/dsproglib/6422
Create:
Last Update:

📌 Какой вектор лучше: Dense vs Multi-vector embeddings

Раньше хватало одного эмбеддинга на документ. Сейчас — этого уже мало. Нужна структура.

📍 Dense-векторы (single vector per doc):
— быстрые
— экономные по памяти
— слабо улавливают контекст
— «плавают» при сложных запросах
👉 подходят для простого поиска

📍 Multi-vector (late interaction):
— вектор на каждый токен
— сравниваются токены запроса и документа напрямую
— лучше качество на сложных задачах
— выше требования к хранилищу
👉 баланс между скоростью и точностью

📍 Late interaction ≈ золотая середина:
— быстрее, чем cross-encoders
— точнее, чем dense-векторы

📍 Примеры моделей:
— ColBERT — для текстов
— ColPali — multimodal: текст + PDF как картинки
— ColQwen — как ColPali, но на Qwen2 (Apache 2.0, компактнее)

Если вы работаете с PDF-документами (таблицы, графики, изображения) — мультивекторные модели решают большинство проблем без «чaнкинга» и костылей.

Библиотека дата-сайентиста #буст

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение




Share with your friend now:
tg-me.com/dsproglib/6422

View MORE
Open in Telegram


Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

Look for Channels Online

You guessed it – the internet is your friend. A good place to start looking for Telegram channels is Reddit. This is one of the biggest sites on the internet, with millions of communities, including those from Telegram.Then, you can search one of the many dedicated websites for Telegram channel searching. One of them is telegram-group.com. This website has many categories and a really simple user interface. Another great site is telegram channels.me. It has even more channels than the previous one, and an even better user experience.These are just some of the many available websites. You can look them up online if you’re not satisfied with these two. All of these sites list only public channels. If you want to join a private channel, you’ll have to ask one of its members to invite you.

Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение from ye


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA